
FERMILAB-PUB-17-203-A

Prepared for submission to JCAP

High-Energy Gamma Rays and
Neutrinos from Nearby Radio Galaxies

Carlos Blancoa,b and Dan Hooperb,c,d

aUniversity of Chicago, Department of Physics, Chicago, IL 60637
bUniversity of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL 60637
cFermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510
dUniversity of Chicago, Department of Astronomy and Astrophysics, Chicago, IL 60637

E-mail: carlosblanco2718@uchicago.edu, dhooper@fnal.gov

Abstract. Multi-messenger data suggest that radio galaxies (i.e. non-blazar active galaxies)
are a well-motivated class of sources for the diffuse flux of high-energy neutrinos reported
by the IceCube Collaboration. In this study, we consider the gamma-ray spectrum observed
from four nearby radio galaxies (Centaurus A, PKS 0625-35, NGC 1275 and IC 310) and con-
strain the intensity and spectral shape of the emission injected from these sources, accounting
for the effects of attenuation and contributions from electromagnetic cascades (initiated both
within the radio galaxy itself and during extragalactic propagation). Assuming that this
gamma-ray emission is generated primarily through the interactions of cosmic-ray protons
with gas, we calculate the neutrino flux predicted from each of these sources. Although this
scenario is consistent with the constraints published by the IceCube and ANTARES Collab-
orations, the predicted fluxes consistently fall within an order of magnitude of the current
point source sensitivity. The prospects appear very encouraging for the future detection of
neutrino emission from the nearest radio galaxies.
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1 Introduction

Since the IceCube Collaboration announced their discovery of a diffuse flux of high-energy
astrophysical neutrinos [1], a great deal of effort has been directed toward identifying the
sources of these intriguing particles. Among other possibilities, it has long been speculated
that observable fluxes of high-energy neutrinos could potentially be generated by gamma-ray
bursts [2–4], active galaxies [5–8], and star-forming galaxies [9] (for reviews, see Refs. [10, 11]).
When scrutinized in the light of multi-messenger data, however, many of these proposed
neutrino sources do not fare well. In particular, IceCube has not detected any statistically
significant correlations in time or direction between their events and observed gamma-ray
bursts, all but ruling out the possibility that such sources are responsible for the measured
neutrino flux [12, 13] (very low-luminosity gamma-ray bursts may be able to evade this
constraint, however [14–17]). Furthermore, an analysis of IceCube data has not revealed any
correlations with the members of the Fermi Gamma-Ray Space Telescope’s blazar catalog,
leading to the conclusion that no more than 20% of IceCube’s flux can originate from this
class of active galaxies [18] (see also Ref. [19]).

Supernova and hypernova remnants in star-forming and starburst galaxies may also
generate significant fluxes of high-energy neutrinos, with spectra that could potentially ex-
tend up to energies of ∼ 0.1–1 PeV. Interactions generating neutrinos in these sources would
inevitably produce a comparable flux of gamma-rays, however, leading to the production of
electromagnetic cascades and thus contributing to the GeV-TeV extragalactic gamma-ray
background. In light of recent evidence that the extragalactic gamma-ray background is
dominated by blazars at energies above 50 GeV [20], it now appears that the sources of
IceCube’s neutrino flux must exhibit a significantly harder spectral index than that observed
from star-forming galaxies. More specifically, the authors of Refs. [21, 22] argue that the
10-100 TeV neutrino flux observed by IceCube cannot be generated by this class of sources
(although they may be able to explain the flux observed above ∼100 TeV [21, 23, 24]). Sim-
ilar, but more general, arguments can be extended to show that any class of sources which
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produces IceCube’s neutrino flux through proton-proton interactions must exhibit a hard
spectral index, < 2.1–2.2, and will inevitably contribute non-negligibly to the high-energy
gamma-ray background measured by Fermi [25, 26] (see also Refs. [22, 27, 28]).

As sources such as gamma-ray bursts and blazars have become disfavored, non-blazar
active galaxies (those with jets not aligned in the direction of the observer) have become
an increasingly attractive class of sources for IceCube’s high-energy neutrinos [8, 26, 29, 30]
(see also Refs. [31–37]). In this paper, we will refer to this class of objects as radio galaxies,
which includes both Fanaroff-Riley (FR) Type I and Type II galaxies, which are generally
thought to be the misaligned counterparts of BL Lac objects and flat spectrum radio quasars,
respectively. This conclusion is further strengthened by the observed characteristics of the
isotropic gamma-ray background (IGRB), as measured by the Fermi Gamma-Ray Space
Telescope [38]. In particular, it has been shown in recent studies that radio galaxies [39] and
star-forming galaxies [40] (see also Refs. [41–44]) together provide the dominant contributions
to the IGRB (smaller but potentially non-negligible contributions also come from blazars [43,
45–48], as well as from galaxy clusters [49], propagating ultra-high energy cosmic rays [50, 51],
and perhaps even annihilating dark matter particles [52–55]). In quantitative terms, Ref. [39]
concludes that unresolved radio galaxies account for no less than 59% of the IGRB photons
above 1 GeV, while Ref. [40] finds that star-forming galaxies are responsible for at least 24%
of the IGRB intensity above 1 GeV (each at the 2σ confidence level). Together, these analyses
strongly support a scenario in which the IGRB is dominated by these two source classes, and
largely by radio galaxies at energies above ∼10 GeV. This conclusion is also consistent with
the findings of previous work [53–59], including studies based on cross-correlations of the
IGRB with multi-wavelength data [60–64].

To unambiguously demonstrate that radio galaxies are responsible for IceCube’s ob-
served neutrino spectrum, it will be essential to identify high-energy neutrinos from individ-
ual radio galaxies. In this paper, we consider the gamma-ray observations of a number of
nearby radio galaxies (focusing on Centaurus A, PKS 0625-35, NGC 1275 and IC 310), using
data from both Fermi and ground-based gamma-ray telescopes. Assuming that the observed
gamma-ray emission is generated through proton-proton interactions, we use the measured
gamma-ray spectra of these sources to characterize and constrain the cosmic-rays that are
generated by these sources, as well as the energy densities of radiation and magnetic fields
present in these environments. We then calculate the neutrino spectra anticipated from these
radio galaxies and assess the prospects for IceCube and future neutrino telescopes to detect
neutrinos from these individual sources.

2 Gamma-Ray Observations of Nearby Radio Galaxies

The Fermi Collaboration has reported the detection of gamma-ray emission from a number of
radio galaxies, including 14 which are listed in the Third Fermi Gamma-Ray Source Catalog
(3FGL) [71]. More recently, statistically significant emission has also been identified from
the radio galaxies 3C 212, 3C 411 and B3 0309+411B, each utilizing publicly available Fermi
data [39]. In addition, ground-based telescopes have detected very high-energy gamma-ray
emission from a number of radio galaxies, including Centaurus A (by HESS) [65], M 87
(by VERITAS, MAGIC and HESS) [72–75], PKS 0625-35 (by HESS) [66], NGC 1275 (by
VERITAS and MAGIC) [74, 76] and 3C 310 (by MAGIC) [74].

The mechanisms which generate the observed gamma-ray emission from these sources
is not yet entirely clear. While some radio galaxies exhibit considerable variability, thus

– 2 –



Galaxy Distance Radius Luminosity GeV Variability VHE Variability

Milky Way – 17 kpc 2× 1010 L� – –

Centaurus A 4 Mpc 15 kpc 2.5× 1010 L� No (59.3) No [65]

PKS 0625-35 228 Mpc 23 kpc 4.4× 1011 L� No (58.0) No [66]

NGC 1275 75 Mpc 24 kpc 1.5× 1011 L� Yes (622.2) Yes [67–69]

IC 310 80 Mpc 27 kpc 7.88× 1010 L� No (38.7) Yes [70]

Table 1. The approximate distance, disk radius, and luminosity of the radio galaxies considered in
this study. Values for the Milky Way are also shown for comparison. In the last two columns, we
list whether each source has been reported to be variable at GeV energies by Fermi, and at very-
high energies by VERITAS, HESS or MAGIC. In the case of Fermi, we provide (in parentheses) the
reported variability index; any value greater than 59.78 (72.44) is less than 10% (1%) likely to be a
steady source [71].

favoring leptonic (i.e. inverse Compton) models, other radio galaxies are not observed to be
variable, and may produce their gamma-ray emission through hadronic processes (i.e. pion
production). If hadronic processes are responsible for a significant fraction of the gamma-
ray emission from these sources, radio galaxies would also be predicted to generate a flux
of high-energy neutrinos similar to that observed by IceCube [26] (see also Refs. [33–37]).
Furthermore, if the accelerated cosmic rays have a spectrum that extends with an unbro-
ken index of approximately ∼ 1.8, radio galaxies could accommodate the observed fluxes of
gamma rays and neutrinos, while simultaneously explaining the spectrum of the ultra-high
energy cosmic rays.

In this study, we focus on those radio galaxies that have been observed at TeV energies
by ground-based gamma-ray telescopes (for a review of gamma-ray emission from non-blazar
active galaxies, see Ref. [77]). In particular, we will consider the following list of radio galaxies
(see also Table 1):

• Centaurus A is the nearest radio galaxy in our sample (4 Mpc), and is comparable
in both size and luminosity to the Milky Way. This galaxy does not show significant
evidence of variability at energies above a couple of GeV [77, 78].

• PKS 0625-35 is the most distant radio galaxy in our sample (228 Mpc), but with a
luminosity that is more than an order of magnitude larger than that of the Milky Way.
PKS 0625-35 does not exhibit any significant evidence of variability [66, 77].

• NGC 1275 is a radio galaxy located near the center of the Perseus cluster. It presents a
peculiar morphology consisting of extended filament-like gas structures which are likely
caused by interactions with intracluster gas. Furthermore, there is a foreground object
in the line-of-sight to NGC 1275 which may be interacting with the central galaxy. The
so-called “high-velocity system” is thought to be a late-type galaxy whose morphology
has been disturbed through interactions with NGC 1275. This high-velocity system is
less than 57 kpc from the center of NGC 1275 and spans ∼ 25 kpc [79, 80]. Fermi reports
a high degree of variability in the emission from NGC 1275 [81]. At very high-energies,
however, MAGIC reports only limited evidence of such variability [67, 77, 82, 83].

• IC 310 is another radio galaxy located in the Perseus cluster. Although observations
by Fermi have revealed no signs of variability, significant variability is evident in the
TeV range, as observed by MAGIC [84]. It has been suggested that the very high-energy
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emission from IC 310 can be separated into two distinct states; a highly variable “high
state” and a steady baseline “low state” [84]. While the overall intensity varies by a
factor of ∼7 between these two states, no distinction in the spectral index is observed.

Due to its strong and rapid variability in the very high-energy band [85–87], we do not
consider further the radio galalxy M 87 in this study.

3 Electromagnetic Cascades in Radio Galaxies

At very high-energies, gamma rays can be significantly attenuated through their scattering
with the optical, infrared and microwave radiation fields present in radio galaxies (as well
as during cosmological propagation). In this section we will describe the calcluation of the
electromagnetic cascades that result from such interactions (for other recent work on this
subject, see Refs. [88–92]). The optical depth associated with interactions in an isotropic
radiation field is given by:

τ(Eγ) =

∫ ∫
σγγ(Eγ , ε)

dn

dε
(ε, r) dε dr (3.1)

≈ l

∫
σγγ(Eγ , ε)

dn

dε
(ε) dε,

where Eγ is the energy of the gamma ray, ε is the energy of the target photon, σγγ is the
total pair-production cross section, and dn(ε, r)/dε is the differential number density of target
photons at a location r. In the second line of this expression, we have integrated over the
trajectory of the gamma ray, yielding a result in terms of the average number density of target
photons, dn(ε)/dε, and a characteristic size for the extent of the target radiation, l. The total
cross section for pair-production is well approximated by the following expression [93]:

σγγ(s) =
3σT
2s2

(
s− 1 +

1

2s
− ln s

2
+ ln 2

)
(3.2)

×
(

ln
(√
s+
√
s− 1

)
+

(ln s)2

4
−
(
ln
(√
s+
√
s− 1

))2
2

+
ln 2 ln s

2
−
√
s2 − s

)
,

where s = Eγε/m
2
e and σT is the Thomson cross section.

The spectrum of electrons and positrons that are generated from these interactions is
given by [93]:

dNe

dEe
(Ee) = l

∫∫
dNγ

dEγ
(Eγ)

dn

dε
(ε)

dσγγ
dEe

(ε, Eγ , Ee) dε dEγ , (3.3)

where dNγ/dEγ is the spectrum of gamma rays injected by the radio galaxy in question, and
dσγγ/dEe is the differential pair-production cross section, given by:

dσγγ
dEe

(ε, Eγ , Ee) =
3σTm

4
e

32ε2E3
γ

[
4E2

γ

(Eγ − Ee)Ee
ln

(
4εEe(Eγ − Ee)

m2
eEγ

)
− 8εEγ

m2
e

+

(
2E2

γ(2εEγ −m2
e)

(Eγ − Ee)Eem2
e

)
−
(

1− m2
e

εEγ

)
E4
γ

(Eγ − Ee)2E2
e

)]
. (3.4)

The energetic electron-positron pairs that are generated through these interaction will
interact with the radiation and magnetic fields through inverse Compton scattering and
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synchrotron processes, respectively. Over the course of losing a quantity of energy, ∆Ee, an
electron or positron of energy Ee will generate the following spectrum of inverse Compton
emission:

dNγ

dEγ
(Eγ , Ee) = A(Ee,∆Ee) fICS(Ee) le

∫
dn

dε
(ε)

dσICS
dEγ

(ε, Eγ , Ee) dε, (3.5)

where A is set by requirement ∆Ee =
∫
dEγ Eγ dNγ/dEγ , fICS(Ee) is the fraction of the

electron or positron’s energy losses that go to inverse Compton scattering (as opposed to
synchrotron), and the differential cross section for inverse Compton scattering is given by [94]:

dσICS
dEγ

(ε, Eγ , Ee) =
3σTm

2
e

4εE2
e

[
1 +

(
z2

2(1− z)

)
+

(
z

β(1− z)

)
−
(

2z2

β2(1− z)

)
−
(

z3

2β(1− z)2

)
−
(

2z

β(1− z)

)
ln

(
β(1− z)

z

)]
, (3.6)

where z ≡ Eγ/Ee and β ≡ 4εEe/m
2
e.

High-energy electrons also lose energy through their interactions with magnetic fields,
via synchrotron emission. For a randomly oriented magnetic field of uniform stength, the
synchrotron energy loss rate is given by:

dEe
dt

=
4σT

3m2
ec

3
UBE

2
e , (3.7)

where UB = B2/8π is the energy density of the magnetic field. In the Thomson limit, the
corresponding energy loss rate resulting from inverse Compton scattering is given by:

dEe
dt

=
4σT

3m2
ec

3
UradE

2
e . (3.8)

For the problem at hand, however, we will often find ourselves well outside of the Thomson
regime, and Klein-Nishina suppression will play an important role. For a radiation spectrum
that consists of a combination of blackbodies, the energy loss rate from inverse Compton
scattering can be written as follows [95]:

dEe
dt

=
4σT

3m2
ec

3

∑
i

Ui,radE
2
e

(
γ2
i,k

γ2
i,k + γ2

)
, (3.9)

where γ = Ee/me, Ui,rad is the energy density in the ith component of radiation, and

γi,k =
3
√

5mec
2

8πkbTi
, (3.10)

where Ti is the temperature of the blackbody.
The fraction of an electron or positron’s energy that goes into inverse Compton scat-

tering is then given by:

fICS(Ee) =

∑
i Ui,rad

(
γ2i,k

γ2i,k+γ2

)
UB +

∑
i Ui,rad

(
γ2i,k

γ2i,k+γ2

) . (3.11)
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In order to calculate the total spectrum of the resulting electromagnetic cascade, we
repeat the above procedure iteratively, evolving each electron/positron until its energy falls
below 1 GeV. In our calculations, we have modelled the radiation fields in a given radio
galaxy as a sum of the following blackbodies: the cosmic microwave background (2.7 K), an
infrared background from thermal dust emission (50.7 K), and an optical background from
starlight (3990 K). While we keep the normalization of the cosmic microwave background
fixed to the measured value, we allow the combined infrared and optical intensities to vary
within a reasonable range of values in each galaxy. More specifically, we adopt the standard
(i.e. GALPROP) interstellar radiation field model of the Milky Way as presented in Refs. [96–
98], and rescale the column depth of the combined optical and infrared components for each
individual radio galaxy. We also allow the cascade to continue evolving after exiting the
radio galaxy, adopting the Dominguez (2011) model [99] for the spectrum of the extragalactic
background light, and assuming intergalactic magnetic fields to be negligible.

4 Modeling The Gamma-Ray Emisison From Individual Radio Galaxies

In this section, we consider measurements of nearby radio galaxies by Fermi and ground based
gamma-ray telescopes and use this information to characterize and constrain the gamma-ray
spectra injected from these sources, as well as the energy densities of radiation and magnetic
fields that lead to the development of electromagnetic cascades in these systems.

We begin with the radio galaxies Centaurus A and PKS 0625-35, each of which exhibit
no discernible variability at GeV or TeV energies. In Figs. 1 and 2, we present the gamma-
ray spectra reported from these sources, including measurements between 1 and 100 GeV by
Fermi [71], and at higher energies by HESS [65, 66].

For each source, we compare the measured spectrum to that predicted by our calcula-
tions, assuming that the initial injected gamma-ray spectrum is described by a power-law,
which is then attenuated by pair production, and supplemented by contributions from elec-
tromagnetic cascades. For each galaxy, we vary the following parameters of our model: the
intensity and spectral index of the injected gamma-ray emission, the normalization of the
combined infrared and optical radiation in the galaxy, and the strength of the magnetic field.
For each radio galaxy, we show results assuming that the injected gamma-ray spectrum ex-
tends to a maximum energy of either Ecut = 1011 GeV (top frames) or Ecut = 106 GeV
(bottom frames). In each frame, we show the injected gamma-ray spectrum (dotted blue),
as well as the spectrum after accounting for interactions within the radio galaxy (dashed
orange), and after cosmological propagation (solid red), in each case adopting the best-fit
values for the four free parameters in our model.

In the case of Centaurus A, the observed spectrum is indistinguishable from an unbro-
ken power-law, and is best fit by an index of γ = 2.38+0.11

−0.16 for Ecut = 1011 GeV (and a nearly
identical index for Ecut = 106 GeV). The spectrum shows no significant evidence of attenua-
tion, or of the presence of a cascade, allowing us to place a modest upper limit on the column
depth of radiation in this galaxy equal to ' 18 times that of the Milky Way (for the radiation
field of the Milky Way, we follow Refs. [96–98]). Given that little attenuation occurs within
the observed energy range in this model, we are not able to meaningfully constrain the mag-
netic field of this galaxy. We also note that although the spectrum of Centaurus A observed
at sub-GeV energies can be explained by synchrotron self-Compton emission [100], it re-
mains possible that the gamma rays observed at higher energies are generated predominately
through hadronic processes.
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Figure 1. The gamma-ray spectrum of the radio galaxy Centaurus A as measured by Fermi (1-100
GeV) [71] and HESS (> 200 GeV) [65]. These results are compared to that predicted by our best-
fit spectral index and attenuation/cascade model, and adopting a maximum gamma-ray energy of
Ecut = 1011 GeV (top) and Ecut = 106 GeV (bottom). In each frame, the dotted blue line denotes
the injected gamma-ray spectrum, prior to any attenuation or cascade. The dashed orange (solid
red) curves describe the spectrum after accounting for interactions within the radio galaxy (and after
cosmological propagation).

In the case of PKS 0625-35, the effects of gamma-ray attenuation and the resulting
electromagnetic cascade are more evident. The best-fit is found for a radiation column depth
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Figure 2. As in Fig. 1, but for the radio galaxy PKS 0625-35. The measurements shown are those
reported by Fermi (1-100 GeV) [71] and HESS (> 200 GeV) [66]. Again, in each frame, the dotted
blue line denotes the injected gamma-ray spectrum, prior to any attenuation or cascade. The dashed
orange (solid red) curves describe the spectrum after accounting for interactions within the radio
galaxy (and after cosmological propagation).

that is ∼12 (5) times that of the Milky Way for Ecut = 1011 GeV (106 GeV), although with
large uncertainties. A radiation density in the range favored by our fit would not be surprising
given the high luminosity of this galaxy. Again, we are not able to significantly constrain the
magnetic field energy density, although values in the vicinity of a few µG provide the best
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fit. The injected spectral index of this source is somewhat harder than that observed from
Centaurus A, γ = 2.07± 0.10 for Ecut = 1011 GeV (and even harder for Ecut = 106 GeV, for
which the best-fit is γ = 1.85). We note that the cascade is more prominent in the case of
PKS 0625-35 than in that of Centaurus A in large part because of its harder spectral index,
which causes a larger fraction of the total emitted energy to be attenuated and transferred
into lower-energy cascade photons.

Next, we turn our attention the radio galaxy NGC 1275. Unlike either Centaurus A
or PKS 0625-35, this source is observed to be variable at GeV energies [81], and to a lesser
extent at TeV energies as well [67–69, 74, 76, 77, 82, 83]. From the behavior observed by
Fermi, it appears plausible that the emission from NGC 1275 may consist of a combination of
variable and steady components, with a ratio of roughly 2:1. With this in mind, in carrying
out our fits to NGC 1275 (and as plotted in Fig. 3), we reduce the overall normalization of
the spectrum reported by Fermi by a factor of three.

In Fig. 3, we show the best-fit spectra that result from this fit. In this case, the effects
of attenuation are pronounced, although little evidence of a cascade is present in the spectral
shape (due to the relatively soft spectral index of this source). The radiation column depth is
found to be ∼10-24 times that of the Milky Way in our fit. We speculate that this relatively
large value may be, in part, due to the presence of the high-velocity system located along
the line-of-sight [79, 80]. Again, we are not able to significantly constrain the magnetic field
energy density. The spectral index of this source is γ = 2.32±0.08 for Ecut = 1011 GeV (and
γ = 2.33± 0.10 for Ecut = 106 GeV).

And lastly, in Fig. 4 we show the results of our fit to the spectrum of the radio galaxy IC
310. For a choice of Ecut = 1011 GeV, we find that the fit prefers an injected spectral index
of γ = 2.09+0.08

−0.15. Although the best-fit was found for a radiation column density near that of
the Milky Way and a negligible magnetic field, we were not able to meaningfully constrain
these quantities. Similar to PKS 0625-35, we find that the required spectral index becomes
harder if we reduce the value of the Ecut. For a choice of Ecut = 106 GeV, for example, we
find a best-fit of γ = 1.97.

At this point, we can use the results presented in this section to make a few general
comments. If the extraterrestrial neutrino flux observed by IceCube originates from proton-
proton interactions, the injected fluxes of gamma rays and neutrinos are predicted to feature
a common spectral index. Given that IceCube has measured a spectral index in the approx-
imate range of γν ∼ 2.0 − 2.5 [101–103], we favor radio galaxy models with values of γ in
approximately this range. Interestingly, we find that this range is in good agreement with
the results presented in this paper. For Ecut = 1011 GeV, all four radio galaxies considered
feature best-fit indices within this preferred range (γ = 2.38 for Centaurus A, 2.07 for PKS
0625-35, 2.32 for NGC 1275, and 2.09 IC 310). In contrast, for a lower cutoff of Ecut = 106

GeV, we find that PKS 0625-35 and IC 310 each favor significantly harder spectral indices.1

This fact provides support for scenarios in which IceCube’s spectrum extends to energies
well above the PeV scale, and for the possibility that this class of astrophysical objects is
responsible for the production of the ultra-high energy cosmic rays.

1The spectral indices favored by our fit are generally harder for lower values of Ecut. This is because
photons in the highest range of energies deposit most of the energy into cascades which peak in the VHE
band, whereas the cascades from lower energy photons peak in the ∼1-100 GeV range.
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Figure 3. As in Figs. 1-2, but for the radio galaxy NGC 1275. The measurements shown are those
reported by Fermi (1-100 GeV) [71] and by MAGIC and VERITAS (>∼ 100 GeV) [67–69]. Again, in
each frame, the dotted blue line denotes the injected gamma-ray spectrum, prior to any attenuation or
cascade. The dashed orange (solid red) curves describe the spectrum after accounting for interactions
within the radio galaxy (and after cosmological propagation).
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Figure 4. As in Fig. 1-3, but for the radio galaxy IC 310. The measurements shown are those
reported by Fermi (1-100 GeV) [71] and MAGIC (>∼ 100 GeV) [70]. Again, in each frame, the dotted
blue line denotes the injected gamma-ray spectrum, prior to any attenuation or cascade. The dashed
orange (solid red) curves describe the spectrum after accounting for interactions within the radio
galaxy (and after cosmological propagation).

5 Pair Halos and the Contribution From Radio Galaxies to the Isotropic
Gamma-Ray Backgorund

In the previous section, we found that a significant fraction of the emission observed from
radio galaxies in the GeV-TeV range may be the result of electromagnetic cascades produced
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through the pair production of VHE photons with radiation backgrounds. This is especially
true in the cases of PKS 0625-35 and and IC 310, which each exhibit somewhat hard spectral
indices.

When a VHE photon undergoes pair production and initiates an electromagnetic cas-
cade, this has the effects of broadening the angular width of the emission observed from the
source. In particular, the cascade emission from a source at a distance D will approach us
from the following angle relative to that of the source:

sin θExt =
d

D
sin δ, (5.1)

where the VHE photon initiates the cascade after propagating a distance, d, and δ is the
angle between the propagation direction of the cascade photon and that of the initial VHE
photon. This angle can be approximate by the following [104–106]:

sin δ ' De

rL
∼ 3× 10−3

(
B

10−15 G

)(
10 TeV

Ee

)2

, (5.2)

which for sin δ � 1 reduces to the following:

δ ' De

rL
∼ 0.2◦

(
B

10−15 G

)(
10 TeV

Ee

)2

. (5.3)

In these expressions, De is the length scale over which an electron of energy Ee loses its
energy via inverse Compton scattering and rL the Larmor radius of the same electron in a
magnetic field of strength B.

As a concrete example, consider a source located at a distance of 100 Mpc. If the
strength of the intergalactic magnetic field is B ∼ 10−16 G or less, essentially the entire
energy range that is efficiently attenuated will feature δ <∼ 0.1◦, and thus the morphology of
the resulting cascade emission will be indistinguishable from that of the original point source.
If the intergalactic magnetic field is stronger, however, a significant fraction of the cascade
could be observably deflected.

For an approximately maximal value of B ∼ 10−10 G, for example, the resulting inverse
Compton emission generated in the cascade will be approximately isotropic for electrons
less energetic than Ee <∼ 200 TeV. As a consequence of these deflections, we predict that
approximately half of the total cascade emission will not be directed toward the source in
this case, but will instead contribute to the IGRB (for the case of γ = 2.2 and Ecut = 1011

GeV). Furthermore, those electrons which are either more modestly deflected, or that are
deflected within a few Mpc of the source, can lead to the appearance of a “pair halo” of
gamma-ray emission, extending around the source by ∼ 0.1 − 1◦. In this case, the main
contribution to the pair halo results from electrons with energies of order ∼100 TeV and that
are produced at a distance of approximately ∼0.3-3 Mpc from the source.2 For this choice
of distance and magnetic field strength, we expect that approximately ∼5-10% of the total
cascade emission will contribute to the formation of a pair halo.

For intermediate values of the magnetic field strength (B ∼ 10−14−10−11 G), we expect
most of the cascade emission to be indistinguishable from the original point source, although
non-negligible pair halos can be generated over much of this parameter space.

2In Fig. 5, we plot the fraction of the total cascade emission that is generated as a function of distance
(for a source located at 100 Mpc). For a spectral index of γ = 2.2, approximately 90% of the total cascade
energy is deposited within 2 Mpc of the source.
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Figure 5. The fraction of the total cascade emission that is generated as a function of distance, for a
source that is located at a distance of 100 Mpc. Results are shown for spectral indices of 1.8 (dashed),
2.0 (solid), 2.2 (dotted) and 2.4 (dot-dashed). For a spectral index of γ = 2.2, approximately 90% of
the total cascade energy is deposited within the first 2 Mpc around the source.

6 Connections with Neutrinos and Ultra-High Energy Cosmic Rays

Active galaxies are among the most promising sources for the acceleration of high-energy
cosmic rays. And although many models have been discussed in recent years (see, for example,
Ref. [8, 30, 32, 107]), it is not difficult to imagine scenarios in which these cosmic rays interact
with gas to generate both the gamma-rays observed from these sources, as well as the diffuse
neutrino flux observed by IceCube. In this section, we consider the results of the previous
sections within the context of a simple model in which many of the cosmic rays accelerated
by active galaxies escape the acceleration region and then proceed to diffuse through the
surrounding galactic (or perhaps cluster) environment, where a fraction of them scatter with
gas to generate charged and neutral pions. Throughout this discussion, we will remain
agnostic as to where and by what means the cosmic-ray acceleration is taking place within
active galaxies, only assuming that after being accelerated, these particles undergo diffusion
through the surrounding medium.

Over a time, t, a typical cosmic ray will travel a net distance given by ddif ∼ 2
√
D(Ep)t,

where D(Ep) is the energy dependent diffusion coefficient. Adopting a Kolmogorov spectrum
of magnetic inhomogeneities, the diffusion coefficient takes the following form:

D(Ep) =
1

3
c lc

(
rL
lc

)1/3

≈ 1.5× 1030 cm2/s

(
Ep

PeV

)1/3( lc
kpc

)2/3(µG

B

)1/3

, (6.1)

where rL is the Larmor radius of the propagating cosmic ray and lc is the coherence length
of the magnetic field. Our representative choice of l2c/B ' kpc2/µG should be considered
a reasonable estimate, as this leads to a diffusion coefficient that is consistent with that
derived from measurements of GeV-TeV cosmic rays in the Milky Way [108, 109]. Diffusion
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is expected to continue up to energies of Ep ∼ EeV × (lc/kpc)(B/µG), above which free-
streaming is expected to dominate, allowing cosmic rays to more rapidly escape from their
parent galaxies.

From the diffusion coefficient given in Eq. 6.1, we can estimate that a typical cosmic-ray
proton will will remain confined within the volume of its parent galaxy for the following time:

tesc ∼
d2

dif

4D(Ep)
∼ 1.6× 1014 s×

(
ddif

20 kpc

)2(PeV

Ep

)1/3(kpc

lc

)2/3( B

µG

)1/3

, (6.2)

during which, the probability of scattering with gas is given by P (Ep) = 1− e−τpp(Ep), where
the optical depth is given by:

τpp(Ep) ∼ σpp(Ep) c tesc ngas (6.3)

∼ 0.04×
(

ngas

0.05 cm−3

)(
ddif

20 kpc

)2(PeV

Ep

)1/3(kpc

lc

)2/3( B

µG

)1/3

.

In this expression, ngas represents the average number density of targets within the diffusion
region. The value of the gas density, 0.05 cm−3, adopted in the above expression is appropri-
ate for systems such as NGC 1275 [110], but likely overestimates the optical depth for most
other radio galaxies [111–117]. The reader should remain open-minded to the possibility
that the high-energy neutrino flux observed by IceCube may arise from a subset of radio
galaxies (or galaxy clusters containing active galaxies), weighted by the relative densities of
gas, averaged across their diffusion regions. In any case, the value of the optical depth does
not directly enter any of the calculations or figures presented in this study.

Adopting a power-law form for the spectrum of protons accelerated by the active galaxy,
dNp/dEP = ApE

−Γp
p , the resulting spectra of gamma rays and neutrinos are given as follows:

dNγ

dEγ
≈ Aγ ×

(
Eγ

GeV

)− 4
3

Γp+ 1
3

, (6.4)

and

dNν

dEν
≈ 3

2
Aγ ×

(
Eν

GeV

)− 4
3

Γp+ 1
3

, (6.5)

where the normalization constant Aγ is given by the relationship
∫
ApE

−Γp+1
p τpp(Ep)dEp =

3
∫
AγE

−(4/3)Γp+(4/3)
γ dEγ . These power-law spectra are expected to extend up to energies of

approximately Eγ ∼ 108 GeV× (lc/kpc)(B/µG) and Eν ∼ 0.5× 108 GeV× (lc/kpc)(B/µG),
above which cosmic-ray free-streaming is expected to lead to a steepening of the spectral
index [118]. In this calculation, we have made use of the fact that the average number of

pions produced in a proton-proton collision scales as Nπ ∝ E
1/4
p over the relevant range

of energies, and the average fraction of energy that is carried by a given pion scales as

〈Eπ〉/Ep ∝ E−1/4
p [30, 119].

In order to accommodate the range of injected gamma-ray spectral indices that were
found to be favored in Sec. 4 (γ ' 2.0−2.4), we find from Eq. 6.4 that protons must be injected
with a spectral index of Γp = 0.75 γ + 0.25 ' 1.75− 2.05. This range of spectral indices, as
well as the measured redshift distribution of radio galaxies, is in good agreement with that
required to accommodate the observed ultra-high energy cosmic ray spectrum [50, 120, 121].
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For our choice of parameters, electrons more energetic than a few hundred TeV lose
their energy primarily through synchrotron emission. For a radio galaxy with an injected
gamma-ray spectral index of γ = −2 extending up to 1011 GeV, and normalized to the
gamma-ray flux at 1 GeV from Centaurus A, for example, we estimate that this leads to a
synchrotron spectrum of ∼ 10−6 (E/GeV)−2.5 GeV−1m−2s−1 emitted over a range of critical
frequencies from ∼10 keV to ∼10 GeV. This constitutes only a small fraction of the total
gamma-ray emission (see Fig. 1) and X-ray emission [122] from such a source.

Given the relatively modest mean free paths of the highest energy cosmic rays, one
could expect the ultra-high energy cosmic ray spectrum to be dominated by the nearest radio
galaxies. Within this context, it is particularly interesting that the Auger Collaboration has
reported a modest excess of events above 55 EeV from directions within ∼ 20◦ of Cen A (see
Fig. 9 of Ref. [123], and also Refs. [124–130]). Although this signal constitutes only a ∼ 2σ
excess, it is suggestive within the context of the scenario considered here.

To estimate the degree to which a given ultra-high energy cosmic ray will be deflected,
consider a particle of charge Z, which traverses a distance l though a uniform magnetic field.
Such a particle will be deflected by an angle of θ0 = l/rL, where rL is the Larmor radius of
the particle. Over a large distance, D, such a particle will pass through many such regions,
each with a size comparable to the coherence length of the magnetic field, lc. This leads to
a total deflection that is given by θ ≈ θ0

√
D/lcoh ≈

√
D lcoh/rL. In the case of Centaurus

A (D ≈ 4 Mpc), we estimate that extragalactic magnetic fields will deflect ultra-high energy
cosmic rays by the following angle:

θEG ≈ 1.1◦ ×
(

1020 eV

E

)(
D

4 Mpc

)0.5( lc
Mpc

)0.5( B

10−10 G

)(
Z

10

)
, (6.6)

where E is the energy of the cosmic ray, and B is the strength of the extragalactic magnetic
field. From this estimate, we conclude that the ∼ 20◦ deflections suggested by the Auger data
are unlikely to result from extragalactic magnetic fields. On the other hand, the magnetic
field of the Milky Way is expected to deflect cosmic rays to a greater degree:

θMW ≈ 17◦ ×
(

1020 eV

E

)(
D

10 kpc

)0.5( lc
kpc

)0.5( B

10−6 G

)(
Z

10

)
. (6.7)

This result is in good agreement with the angular extent of the excess above 55 EeV tenta-
tively observed in the direction around Centaurus A by the Auger Collaboration.

7 The Predicted Spectrum of High-Energy Neutrinos

Assuming that the observed gamma-ray emission from a given radio galaxy is generated
through the interactions of cosmic-ray protons with gas, we can directly relate the injected
gamma-ray spectrum to the predicted spectrum of high-energy neutrinos. In particular, it
follows from Eqs. 6.4 and 6.5 that the gamma ray and neutrino spectra will share a common
spectral index, and will exhibit overall relative fluxes given by Fν/Fγ ≈ 2 × (3/4) = 3/2,
where the factors of 2 and 3/4 correspond to the ratio of charged-to-neutral pions produced
and to the fact that three of the four π± decay products are neutrinos.

From this relationship, we can utilize the injected spectra of gamma rays found to
be favored by the fits described in Sec. 4 to predict the spectrum of high-energy neutrinos
from the same collection of radio galaxies (Centaurus A, PKS 0625-35, NGC 1275 and IC
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310). These results are shown in Figs. 6-9. The band in each of these figures represents the
predicted neutrino spectrum, after marginalizing over the normalization and spectral index of
the injected gamma-ray spectrum (at the 1σ level). In each figure, we show results assuming
a maximum injected gamma-ray energy of Ecut = 1011 GeV (upper frames) and Ecut = 106

GeV (lower frames). In Figs. 6-8 we plot the current constraints on the flux from these
sources, as presented by the IceCube and ANTARES Collaborations [131–135]. In the case
of IC 310 (Fig. 9) we show the upper limit from the direction of NGC 1275 [131], which is
located an angular distance of only 0.6◦ from IC 310 on the sky (IceCube has not published
a limit from the direction of IC 310 itself). We note that the locations of IceCube and
ANTARES leads to a natural complementarity in which these detectors are most sensitive
to point sources located in the northern and southern skies, respectively.

From the results presented in these figures, we conclude that the scenario considered here
(namely, that in which the gamma-ray emission from these radio galaxies is generated largely
through proton-proton collisions) is compatible with the current constraints from IceCube
and ANTARES [131, 132]. That being said, the existing constraints are only slightly less
stringent than that expected to be required to test this scenario. In particular, the current
constraints on PKS 0625-35 and IC 310 each exclude a portion of the parameter space that
would have otherwise been favored by the observed gamma-ray spectra. More generally, we
predict neutrino fluxes from these sources that are within an order of magnitude or less of
the current constraints.3

In light of these results, it appears that the scenario considered in this paper is within
the reach of future, if not current, high-energy neutrino telescopes. Very roughly speaking, we
expect that a stacked analysis of the nearest radio galaxies, utilizing the full existing dataset
from IceCube and ANTARES, to be able to improve on the current (single source) sensitivity
by a factor of a few. Furthermore, plans are currently under consideration for significant
extensions of these experiments [136–138], with the potential to definitively test this class
of scenarios. As the results of this study indicate, an order of magnitude improvement over
the current sensitivity to TeV-PeV neutrinos should be sufficient to confirm or refute the
well-motivated hypothesis that radio galaxies are responsible for IceCube’s diffuse neutrino
flux (along with the bulk of Fermi’s IGRB).

8 Summary and Conclusions

Previous studies have demonstrated that the GeV-TeV isotropic gamma-ray background is
dominate by emission from unresolved radio galaxies (i.e. non-blazar active galaxies) [39, 44].
Furthermore, if this gamma-ray emission is taken to be produced through the interactions
of high-energy protons with gas, it has been shown that the corresponding neutrino flux is
in good agreement with that reported by the IceCube Collaboration [26]. In light of these
considerations, and given the evidence against gamma-ray bursts [12, 13], blazars [18, 19],
and star-forming galaxies [21] as the primary sources of the observed neutrinos, radio galaxies
now appear to be the most likely class of sources for IceCube’s reported signal.

In this paper, we have considered the gamma-ray spectra from four nearby radio galaxies
(Centaurus A, PKS 0625-35, NGC 1275 and IC 310), as measured in the ∼1-100 GeV range
by Fermi, and in the ∼0.1-10 TeV range by HESS, VERITAS and/or MAGIC. From this
information, we have determined the range of the injected gamma-ray intensity and spectral

3The neutrino point source limits considered here have been derived assuming a spectrum of the form
dNν/dEν ∝ E−2

ν .
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Figure 6. The neutrino spectrum predicted from the radio galaxy Centaurus A, adopting a maximum
gamma-ray energy of Ecut = 1011 GeV (top) and Ecut = 106 GeV (bottom). In each frame, the band
shown reflects the range predicted after marginalizing over the spectral index and normalization in
the fit to the observed gamma-ray spectrum. Also shown is the (90% confidence level) upper limit
from this source as reported by the ANTARES Collaboration [132].

index that can account for these observations, after accounting for the effects of attenuation
and contributions from electromagnetic cascades. We then calculated the predicted spec-
trum of high-energy neutrinos from these sources, assuming that their observed gamma-ray
emission is generated primarily through cosmic-ray proton interactions with gas.
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Figure 7. As in Fig. 6, but for the radio galaxy PKS 0625-35. Also shown is the (90% confidence
level) upper limit from this source as reported by the ANTARES Collaboration [132].

Our predictions for the neutrino spectra from these four sources generally fall below
the constraints currently placed by the IceCube and ANTARES Collaborations [131, 132].
That being said, the current constraints are typically only a factor of ∼1-10 above the fluxes
predicted in this study. This suggests that a stacked analysis of radio galaxies making use
of the complete data set from these neutrino telescopes could be sensitive to a significant
fraction of the favored parameter space. Furthermore, future high-energy neutrinos telescopes
with somewhat greater sensitivity to TeV-PeV neutrinos [136–138] could definitively test this
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Figure 8. As in Figs. 6-7, but for the radio galaxy NGC 1275. We also show the (90% confidence
level) upper limit from this source as reported by the IceCube Collaboration [131].

scenario in the relatively near future.
In addition to neutrino observations, future gamma-ray observations will enable us

to refine and test the predictions of this scenario. In particular, the upcoming Cherenkov
Telescope Array (CTA) is expected to measure the very high-energy gamma-ray spectra from
a number of radio galaxies with unprecedented precision. Depending on the strength of the
intergalactic magnetic field, it is also possible that CTA could detect an extended component
of gamma-ray emission from these sources, resulting from the deflection of electrons and
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Figure 9. As in Figs. 6-8, but for the radio galaxy IC 310. We also show the (90% confidence level)
upper limit from NGC 1275 as reported by the IceCube Collaboration [131, 132], which is located
0.6◦ away from IC 310 on the sky.

positrons within electromagnetic cascades.
The detection of high-energy neutrinos from individual radio galaxies would provide

a “smoking gun” for the acceleration of high-energy cosmic rays, likely in connection with
the origin of the ultra high-energy cosmic ray spectrum. A unified picture appears to be
emerging in which active galaxies accelerate cosmic ray protons and nuclei with a power-law
index of ∼ 2. Through pion production, these cosmic rays then transfer on the order of 10%
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of their energy into the production of pions, which decay to generate both the diffuse flux
of neutrinos observed by IceCube, as well as a large fraction of Fermi’s isotropic gamma-ray
background.
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